

JY60 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: JY60

描述: 六轴姿态角度传感器

生产执行标准参考

企业质量体系标准: IS09001:2016 标准

倾角仪生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期: 2019.10.24

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	胡名林	20191024

目录

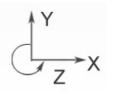
1	产品概述
2	性能参数5
3	引脚说明
4	轴向说明6
5	硬件连接方法
	5.1 串口 (TTL) 连接 7 -
	5.2 连单片机 8 -
6	上位机使用方法
	6.1 使用方法 9 -
	6.2 模块校准 10 -
	6.2.1 Z轴归0 11 -
	6.2.2 加计校准 12 -
	6.3 设置通信波特率 13 -
	6.4 记录数据 13 -
	6.5 安装方向 14 -
	6.6 休眠及解休眠 15 -
	6.7 静止阀值及测量带宽 16 -
7	通信协议 17
	7.1 上位机至模块 17 -
	7.2 模块至上位机: 18 -
	7.2.1 加速度输出: 18 -
	7.2.2 角速度输出: 19 -
	7.2.3 角度输出: 19 -
	7.3 数据解析示例代码: 20 -
	7.4 嵌入式环境下解析数据实例 21 -
8	应用领域 - 23

1 产品概述

- ◆ 模块内部自带电压稳定电路,可以兼容 3.3V/5V 的嵌入式系统,连接方便。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。 带屏蔽罩护,能提供更好的电路保护。
- → 带温度补偿,硬件级的温补。降低由温度变化带来的干扰。(温度变化比较快、幅度较大的情况下需用 HWT605 模块才能解决)
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度 0.05 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 采用邮票孔镀金工艺,品质保证,可嵌入用户的 PCB 板中。
- ◆ 去除了较为复杂的 IIC 传输模式。
- ◆ 使用 icm42605 芯片,可测的角速度和加速度。

注:本模块不含磁场计,没有磁场的观测量对偏航角进行滤波,所以偏航角度是通过纯积分计算出来的,不可避免地会有漂移现象,只能实现短时间内的旋转角度测量。而 X, Y 轴角度可以通过重力场进行滤波修正,不会出现漂移现象。

尺寸


15.24mmX15.24mm X 4mm

2 性能参数

- 1、电压: 3.3V~5V
- 2、正常工作电流: <10mA 休眠工作电流: <10uA
- 3、体积: 15.24mm X 15.24mm X 2mm
- 4、焊盘间距:上下 100mi1(2.54mm),左右 600mi1(15.24mm)
- 5、测量维度:加速度:3维,角速度:3维,角度:3维
- 6、量程:加速度:±16g,角速度:±2000deg/s,角度 X Z 轴±180° Y 轴±90°。
- 7、分辨率:加速度: 0.0005g,角速度: 0.61°/s。
- 8、测量精度: 静态 0.05°, 动态 0.1°。
- 9、数据输出内容:加速度、角速度、角度。
- 10、数据输出频率: 20HZ。
- 11、波特率: 9600kps (固定不可更改)
- 12、数据接口: 串口(TTL电平)

3 引脚说明

名称	功能	
D0	NC 预留端口	
VCC	模块电源, 3.3V 或 5V 输 入	
RX	串行数据输入,TTL 电平	
TX	串行数据输出,TTL 电平	
GND	地线	
SWIM	SWIM 数据接口	
D2	NC 预留端口	
VCC	模块电源, 3.3V 或 5V 输 入	
SCL	NC 预留端口	
SDA	NC 预留端口	
GND	地线	
D3	NC 预留端口	

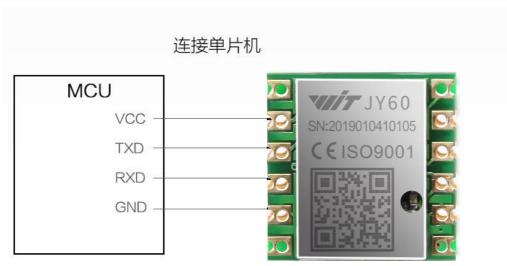
4 轴向说明

如上图所示,模块的轴向在上图右上方标示出来,向右为 X 轴,向上位 Y 轴,垂直与模块向外为 Z 轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。 X 轴角度即为绕 X 轴旋转方向的角度,Y 轴角度即为绕 Y 轴旋转方向的角度, Z 轴角度即为绕 Z 轴旋转方向的角度。

5 硬件连接方法

5.1 串口(TTL)连接

与计算机连接,需要 USB 转 TTL 电平的串口模块。推荐以下两款 USB 转 串口模块:

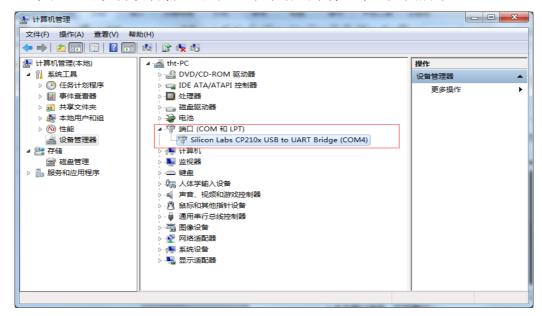

1. USB-TTL 串口模块: 把模块和 USB-TTL 连接好,在插到电脑上。模块和 USB-TTL 连接方法 是: 模块的 VCC TX RX GND 分别于 USB 串口模块的+5V/3V3 RX TX GND 对应相接,**注意** TX 和 RX 需要交叉,即 TX 接 RX,RX 接 TX。

2. 六合一模块:模块拨码开关 1 拨至 0N, 拨码开关 2 拨至 2, 开关 S1 拨至 other(丝印)。模块的 VCC TX RX GND 分别于六合一模块的+5V/3V3 RX TX GND 对应相接,**注意 TX 和 RX** 需**要交叉**,即 TX 接 RX, RX 接 TX。

5.2 连单片机

5.3

6 上位机使用方法



6.1 使用方法

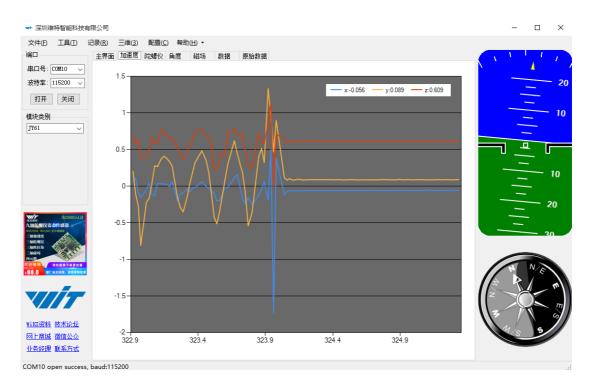
注意,上位机无法运行的用户请下载安装.net framework4.0:

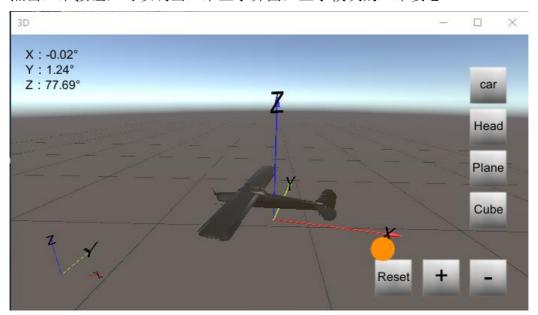
http://www.microsoft.com/zh-cn/download/details.aspx?id=17718


通过 USB-TTL 模块连接上电脑打开上位机,安装好串口模块对应的驱动 CP210X 以后,可以再设备管理器中查询到对应的端口号,如图所示:

驱动程序为 CP210X,如下:

http://pan.baidu.com/s/106Rleae?frm=fujian

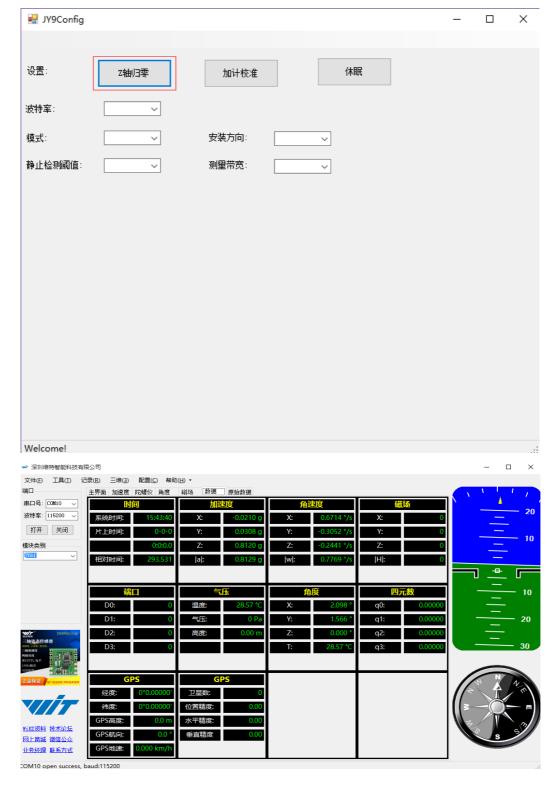

打开 Mini I MU. exe 软件,在【资料包/上位机】中,点击串口选择菜单,选择刚才设备管理器里面看到的 COM 号。


在上位机软件上点击型号菜单选择型号为 WT60。

在上位机软件上点击波特率菜单选择波特率 9600 (固定不可更改),选择完成后,上位机软件上即可出现数据。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。

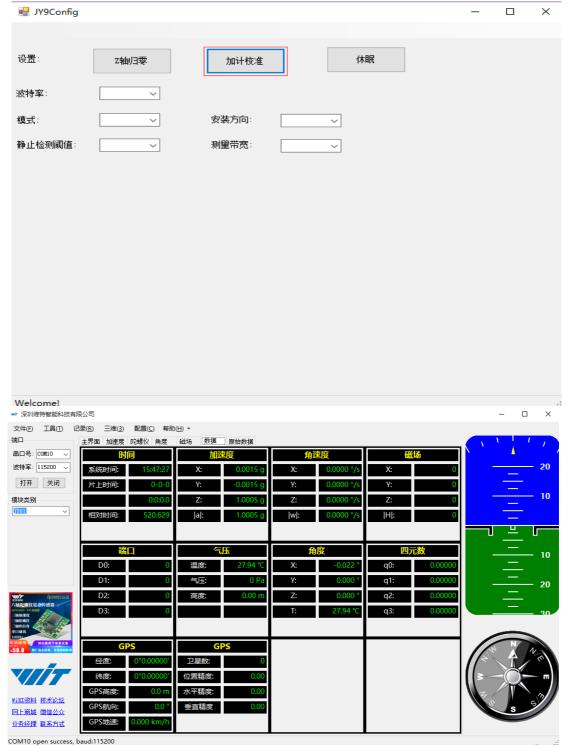
6.2 模块校准


模块使用前,需要对模块进行校准。模块的校准包括 Z 轴归 0、加计校准。

6.2.1 Z轴归0

Z 轴归 0 是使模块 Z 轴角度初始状态为相对 0 度角,模块使用前和 Z 轴漂移较大的情况下可以进行 Z 轴归 0 校准,模块上电时 Z 轴会自动归 0。

上位机 Z 轴归 0 方法如下: 首先模块静止放置,点击配置打开配置栏,在配置栏里面的"Z 轴归零"选项,模块数据栏里面可以看到 Z 轴角度回到 0°。



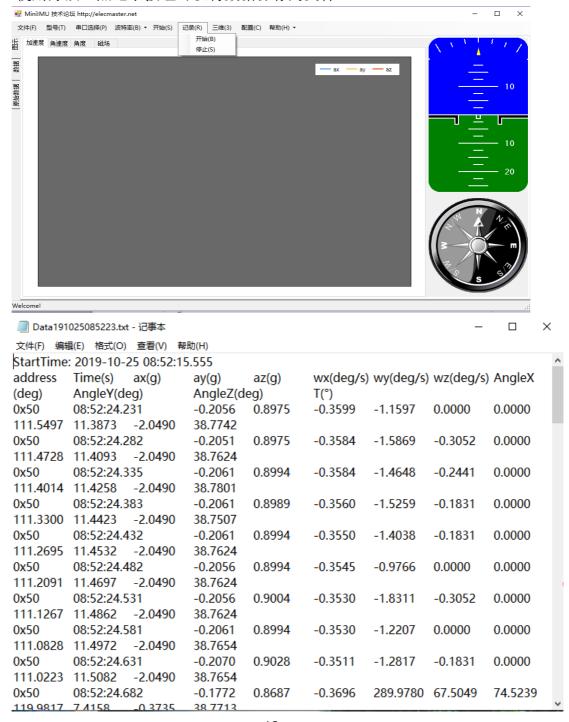
6.2.2 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

加计校准方法如下: 首先使模块保持水平静止,点击加计校准, $1\sim2$ 秒后模块加速度三个轴向的值会在0 0 1 左右,X 和 Y 轴角度在0° 左右。校准后 XY 轴角度就更精确了。

注意: Z 轴水平静止的时候是有 1 个 G 的重力加速度的。

- 12

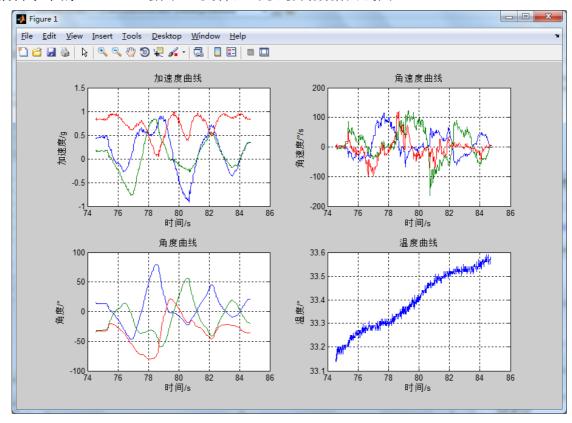


6.3 设置通信波特率

模块默认波特率为9600,固定且不可更改,波特率为9600时模块回传速率为20HZ。

6.4 记录数据

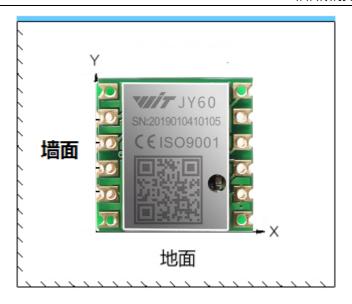
传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。 使用方法:点记录按钮可以将数据保存为文件

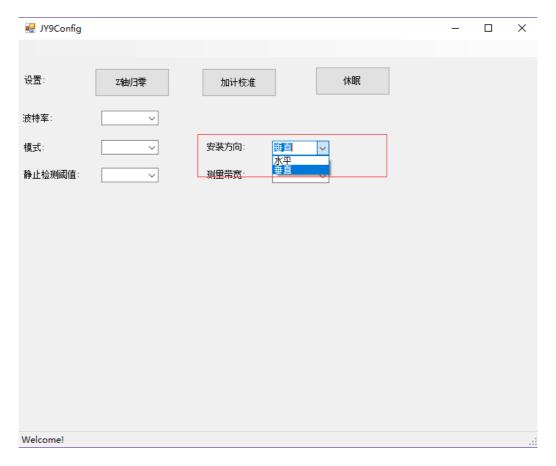


保存的文件在上位机程序的目录下 Data.txt:

文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴向上的加速度,wx wy wz 分别表示 x y z 三个轴向上的角速度,Anglex Angley Anglez 分别表示 x y z 三个轴向的角度,T 代表时间。

数据可以导入到 Excel 或者 Matlab 中进行分析。在 Matlab 环境下运行上位 机根目录下的 "Matlab 绘图.m"文件,可以绘制数据曲线图。




6.5 安装方向

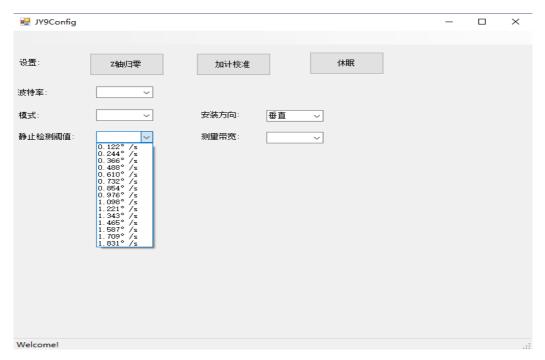
模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。

垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面"安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。

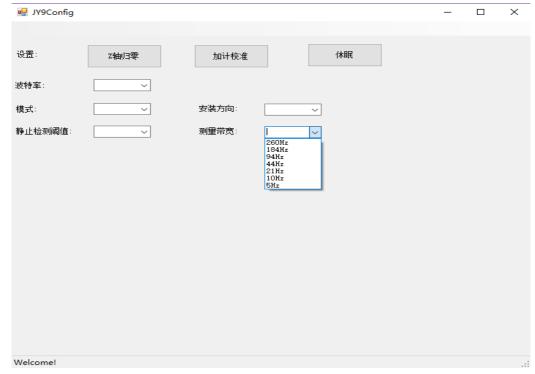
6.6 休眠及解休眠

休眠: 模块暂停工作, 进入待机状态。休眠后可以降低功耗。

解休眠: 模块从待机状态进入工作状态。


使用方法:模块默认为工作状态,在上位机配置栏里面点击"休眠"选项,进入休眠状态,再点击"休眠"选项,模块解除休眠。

6.7 静止阀值及测量带宽


静止阀值:模块静止时,陀螺仪芯片测量的角速度是有微小变化的。静止阀值的作用是当角速度小于阀值时,模块输出角速度为 0。(注意角速度在匀速转速的情况下,输出有问题,推荐在匀速转动下用 61P)

使用方法:在上位机配置栏里面点击"静止阀值"选项,即可设置阀值。模块默认为 0.122°/s。

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为10HZ。

注:静止阀值和测量带宽一般为默认的就可以了,不需要去设置。

7 通信协议

电平: TTL 电平(非 RS232 电平, 若将模块错接到 RS232 电平可能造成模块损坏)

波特率: 9600, 停止位 1, 校验位 0。

7.1 上位机至模块

指令内容	功能	备注
0xFF 0xAA 0x52	角度初始化	使Z轴角度归零
0xFF 0xAA 0x67	加速度计校准	校准加速度零偏
0xFF 0xAA 0x60	休眠及解休眠	待机模式和工作模式
0xFF 0xAA 0x65	水平安装	模块水平放置
0xFF 0xAA 0x66	垂直安装	模块垂直放置

说明:

1.模块上电以后需先保持静止,模块内部的 MCU 会在模块静止的时候进行自动校准(消除陀螺零漂),校准以后 Z 轴的角度会重新初始化为 0, Z 轴角度输出为 0 时,可视为自动校准完成的信号。

2.配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

7.2 模块至上位机:

模块发送至上位机每帧数据分为3个数据包,分别为加速度包,角速度包和角度包,3个数据包顺序输出。波特率9600时每隔50ms输出1帧数据。

7.2.1 加速度输出:

数据编号	数据内容	含义
0	0x55	包头
1	0x51	标识这个包是加速
		度包
2	AxL	X轴加速度低字节
3	AxH	X轴加速度高字节
4	AyL	Y轴加速度低字节
5	AyH	Y轴加速度高字节
6	AzL	Z轴加速度低字节
7	AzH	Z轴加速度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

加速度计算公式:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_v=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_z=((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x51+AxH+AxL+AyH+AyL+AzH+AzL+TH+TL 说明:

- 1、数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下:

假设 Data 为实际的数据,DataH 为其高字节部分,DataL 为其低字节部分,那么: Data=((short)DataH<<8)|DataL。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

http://www.openedv.com/forum.php?mod=viewthread&tid=79352&page=1&extra=#pid450195

7.2.2 角速度输出:

数据编号	数据内容	含义
0	0x55	包头
1	0x52	标识这个包是角速
		度包
2	wxL	X轴角速度低字节
3	wxH	X轴加速度高字节
4	wyL	Y轴加速度低字节
5	wyH	Y轴加速度高字节
6	wzL	Z轴加速度低字节
7	wzH	Z轴加速度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

角速度计算公式:

 $w_x = ((wxH << 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_y = ((wyH < < 8)|wyL)/32768*2000(^{\circ}/s)$

 $w_z = ((wzH << 8)|wzL)/32768*2000(^{\circ}/s)$

温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL

7.2.3 角度输出:

数据编号	数据内容	含义
0	0x55	包头
1	0x53	标识这个包是角度
		包
2	RollL	X轴角度低字节
3	RollH	X轴角度高字节
4	PitchL	Y轴角度低字节
5	PitchH	Y轴角度高字节
6	YawL	Z轴角度低字节
7	YawH	Z轴角度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

角速度计算公式:

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角(y轴)Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角 (z轴) Yaw=((YawH<<8)|YawL)/32768*180(°)


温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL注:

- 1. 姿态角解算时所使用的坐标系为东北天坐标系,正方向放置模块,如下图所示向右为 X 轴,向上为 Y 轴,垂直模块向外为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为 Z-Y-X,即先绕 Z 轴转,再绕 Y 轴转,再绕 X 轴转。
- 2. 滚转角的范围虽然是±180 度,但实际上由于坐标旋转顺序是 Z-Y-X,在表示姿态的时候,俯仰角(Y轴)的范围只有±90 度,超过 90 度后会变换到小于 90 度,同时让 X轴的角度大于 180 度。详细原理请自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动,X 轴的角度也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

7.3 数据解析示例代码:

```
double a[3],w[3],Angle[3],T;
void DecodeIMUData(unsigned char chrTemp[])
{
    switch(chrTemp[1])
    {
        case 0x51:
            a[0] = (short(chrTemp[3]<<8|chrTemp[2]))/32768.0*16;
            a[1] = (short(chrTemp[5]<<8|chrTemp[4]))/32768.0*16;
            a[2] = (short(chrTemp[7]<<8|chrTemp[6]))/32768.0*16;
            T = (short(chrTemp[9]<<8|chrTemp[8]))/340.0+36.25;
            break;</pre>
```



```
 \begin{array}{l} \text{case } 0x53; \\ \text{Angle[0]} = (\text{short}(\text{chrTemp[3]} << 8|\text{chrTemp[2]}))/32768.0*180; \\ \text{Angle[1]} = (\text{short}(\text{chrTemp[5]} << 8|\text{chrTemp[4]}))/32768.0*180; \\ \text{T} = (\text{short}(\text{chrTemp[9]} << 8|\text{chrTemp[8]}))/340.0+36.25; \\ \text{printf}("a = \%4.3f\t\%4.3f\t\%4.3f\t\r\n",a[0],a[1],a[2]); \\ \text{printf}("Angle = \%4.2f\t\%4.2f\t\T=\%4.2f\r\n",Angle[0],Angle[1],T); \\ \text{break;} \\ \end{array} \}
```

7.4 嵌入式环境下解析数据实例

分成两个部分,一个是中断接收,找到数据的头,然后把数据包放入数组中。另一个是数据解析,放在主程序中。

中断部分(一下为 AVR 单片机代码,不同单片机读取寄存器略有差异,需根据实际情况调整):

```
unsigned char Re_buf[11],counter=0;
     unsigned char sign;
     interrupt [USART RXC] void usart rx isr(void) //USART 串行接收中断
            Re buf[counter]=UDR;//不同单片机略有差异
            if(counter==0\&\&Re\_buf[0]!=0x55) return;
                                                              //第0号数据不是帧
头,跳过
            counter++;
            if(counter==11) //接收到 11 个数据
                counter=0; //重新赋值,准备下一帧数据的接收
                sign=1:
     主程序部分:
     float a[3],w[3],angle[3],T;
    extern unsigned char Re_buf[11],counter;
    extern unsigned char sign;
     while(1)
     {
        if(sign)
            sign=0;
                                         //检查帧头
            if(Re_buf[0]==0x55)
             switch(Re_buf [1])
             case 0x51:
                 a[0] = \frac{\text{short}(\text{Re\_buf } [3] << 8| \text{Re\_buf } [2])}{32768.0*16};
                 a[1] = \frac{\text{short}(\text{Re\_buf } [5] << 8| \text{Re\_buf } [4])}{32768.0*16};
                 a[2] = (\text{short}(\text{Re\_buf } [7] << 8 | \text{Re\_buf } [6]))/32768.0*16;
                 T = (\text{short}(\text{Re buf } [9] << 8| \text{Re buf } [8]))/340.0+36.25;
                 break:
```



```
case 0x52:
    w[0] = (short(Re_buf [3] << 8 | Re_buf [2]))/32768.0*2000;
    w[1] = (short(Re_buf [5] << 8 | Re_buf [4]))/32768.0*2000;
    w[2] = (short(Re_buf [7] << 8 | Re_buf [6]))/32768.0*2000;
    T = (short(Re_buf [9] << 8 | Re_buf [8]))/340.0+36.25;
    break;
    case 0x53:
        angle[0] = (short(Re_buf [3] << 8 | Re_buf [2]))/32768.0*180;
        angle[1] = (short(Re_buf [5] << 8 | Re_buf [4]))/32768.0*180;
        angle[2] = (short(Re_buf [7] << 8 | Re_buf [6]))/32768.0*180;
        T = (short(Re_buf [9] << 8 | Re_buf [8]))/340.0+36.25;
        break;
    }
}

具体程序代码可以参考资料里的示例代码。
```


8 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

JY60 姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦